A Non-Commutative Bayes Theorem Ben Russo (Farmingdale-SUNY) Joint work with Arthur J. Parzygnat (I.H.E.S)

Classical Bayes Probability of B given A P(A|B) = P(B|A)P(A)P(B)Marginal Probabilities. Probability of A given B.

Classical Bayes Support B provides for A. P(A|B) = P(B|A) P(A)Prior-initial belief in A. Posterior I dea We will encode this diagrammatically in categories that abstract the relevant probablistic notions. This will include C*-algebras.

FinStoch Objects : Finite Sets X Morphisms Stochastic Maps X ~ Y -associates a probability measure fx on Y to each xeX $-f_{x}(A) = \sum_{y \in A} f_{yx} ; f_{yx} = f_{x}(y)$ Composition: $(g \circ f)_{zx} = \sum_{y \in V} g_{zy} f_{yx}$

•	•	•	•		•	•		•	•		•		•		•	•	•	•
•	*		•	•		•			٠		•	*	٠	•	٠		•	•
			•						٠					•	٠			
•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	٠	•	•	•
•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•
•	*		•	•		•		•	•		•	*	٠		٠		٠	•
•	•	•	•				٠	•	٠	٠		٠	٠	•	٠	•		
	•		•				•		•			•		•	•			
•						•					•	•					•	
·	•	*	÷	•	•	·	۰	•	*	۰	·	•	*		•	*	·	•
•	•		•	•	•	•			•		•		•	•	•		•	•
•	*	•	•	•	•	٠	*	•	•		•	*	•		•	•	٠	•
•	٠	•	•	٠	•	•	٠	•	٠	٠	•	٠	•	٠	٠	•	•	٠
	•	•	•	•			٠		٠	٠		•	•	•	٠	•		
	*																	
•						•					•	•					•	
•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	*	٠	•	•	•	٠	•	٠	٠	•	٠	•	٠	٠	•	•	•
•	•	•	•	٠	•	•	•	•	٠	•	•	٠	٠	٠	٠	•	•	•
•	•		٠	•	•	•		•	٠		•	*	٠	٠	٠	•	٠	•
•	٠	•	•	٠	•	•	٠	•	٠	٠		٠	•	٠	٠	•	•	•
•	•		•						•					•				
•																		
									•									
•			÷	•	•	·		•	•		·	0	•	•		•	·	
•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•
•	•		•	•	•	•		•	•		•	•	•	•	•	•	•	•
•	•		•		•	•		•	•		٠	٠	•	•			•	•
•	•		٠	•		•		•	٠		•	*	٠	٠	٠	•	•	•
•	•		•	•	•		•	•	٠	•		٠	•	٠	٠	•	•	
		٠				٠												
•											•							
									•		•							
				-			-			-	-	-				-		÷
•	•	٠	٠	•	•	•	•	٠	٠	•	•	*	٠	•	٠	•	٠	•
•	•	٠	•	•	•	٠		٠	•		•	•	٠	•		•	٠	•
•	•	•	·	•		•		•	•		•			•	•	•	•	•

Definition A Markov Category is a symmetric monoidal category in which every object $X \in C$ has two maps $\Delta_x : X \longrightarrow X \otimes X$ and $!X : X \longrightarrow \{\cdot\}$, called copy and discard.

Definition	A Markov Category is a symmetric monoidal in which every object $X \in C$ has two maps Δ_x : and $[X: X \longrightarrow \{\cdot\}, called copy and discard.$	X
symmetric	monoidal category: A category M equipped with)
$\otimes M \times M -$	→ M and a unit object 1 € M, and some natural	
· · · · · · · · · · · · · ·		
· · · · · · · · · · · · · ·		
· · · · · · · · · · · ·		
· · · · · · · · · · · · ·		
· · · · · · · · · · · · · ·		
· · · · · · · · · · · ·		
· · · · · · · · · · · · ·		

category (→X⊗X

a functor isomorphisms

Definition: A Markov Category is a symmetric monoidal category in which every object $X \in C$ has two maps $\Delta_X : X \longrightarrow X \otimes X$ and $[X : X \longrightarrow \{\cdot\}, called copy and discard.$ symmetric monoidal category: A category M equipped with a functor \otimes : MXM \rightarrow M and a unit object 1 \in M, and some natural isomorphisms $\mathcal{A}_{x,y,z} : (X \otimes y) \otimes \mathbb{Z} \longrightarrow X \otimes (Y \otimes \mathbb{Z})$ $\rho_{\star} := \chi \otimes 1 \longrightarrow \chi$ $\lambda_{\star} : 1 \otimes \chi \longrightarrow \chi$ $B_{xy} : x \otimes y \longrightarrow y \otimes x$

Definition: A Markov Category is a symmetric monoidal category in which every object $X \in C$ has two maps $\Delta_x : X \longrightarrow X \otimes X$ and $!X : X \longrightarrow \{\cdot\}$, called copy and discard. symmetric monoidal category: A category M equipped with a functor \otimes : MXM \rightarrow M and a unit object 1 \in M, and some natural isomorphisms $a_{x,y,z}: (x \otimes y) \otimes z \longrightarrow x \otimes (y \otimes z)$ Satisfying relationships like: $\rho_{\star}: X \otimes 1 \longrightarrow X$ $\lambda_{\star}:1\otimes \mathsf{X}\longrightarrow \mathsf{X}$ $(X \otimes 1) \otimes y \xrightarrow{a_{X,1,y}} X \otimes (1 \otimes y)$ $B_{xy} : x \otimes y \longrightarrow y \otimes x$ $p_{\mathbf{x}} \otimes l_{\mathbf{y}}$ $l_{\mathbf{x}} \otimes \lambda_{\mathbf{y}}$ Хøу and others!

		• •	• •	•	• •	• •	
categori			· ·			• •	
V V V		• •	• •	•	• •	• •	
	• • •						
· · · · · · ·	· · ·	• •	• •	•	• •	• •	· ·
y x y	· · ·	• •	• •	•		• •	
J			· ·			• •	
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · ·	· ·	• •	•	• •	• •	• •
		• •				• •	
	· · ·	· ·	· ·		· ·	• •	
	· · ·	• •	•••	•	• •	• •	
				•		• •	
2 · · · · · · · · · · · · · · · · · · ·	· · ·	· ·	· ·	•	· ·	· ·	· ·
· · · · · ·				•			•
	· · ·				• •		
	· · ·	· ·	· ·		· ·	• •	
· · · · · · ·				•			
y 2		• •		•	· ·	• •	
	• • •	• •	• •		• •	• •	

Bayes Redux Let X and Y be finite sets. Given a probability and a stochastic map $f: X \longrightarrow Y$, there exists a stoch g: Ym X such that the following diagram commutes. $q = f \circ P$ Y&Ymm,X&Ymm $X \otimes X$ 9 xid, id xf

	• •	•	•	•	•	•	•		•	•	•	•	•	٠	٠
													•		
											•				
		•													
													•	•	
	7	\sim		· C		•								•	
MEUT	2U	.0 C			\mathcal{I}	•					•			•	
lant		10	a a	Ċ		•									
MUSC	(\Box)	γγ	10	L)				•						
	• •			. เ											
	0 0	٠													
	• •														
	• •														
	• •					•									
	• •														
						•									
						•									
				0											
			•									•	•		
			•												
						•									
											•				
									•					•	
									٠					•	
									•				•	٠	
/ · · ·			•										٠		
X							0					•	•		
• • • •			•												
			•						•		•		•	٠	
									٠					•	
			•					•	٠		•			٠	
									•				•	٠	
			•	•		•							*		•
			•			•							•		•
									•						
	• •								•						
	• •					•									
									•						•
	• •														
	• •														
	• •	•				•						•		•	•
	0 0	٠	•						•			٠			•
	0 0	•	•					•						•	

Bayes Redux $q = f \circ P$ y ⊗ Y m g x id, $X \otimes I$ $\langle \otimes \rangle$ id, xf q:{·}~~,Y $f_{x}: X \longrightarrow Y$ P : { $g: Y \longrightarrow X$ gye Prob(X) q e Prob(Y) $f_x \in Prob(Y)$ Pe $P(A|B) P(B) = \sum_{y \in B} g_y(A) g_y$ $P(B|A) \cdot P(A) = \sum$

• • • • •		•	•				•	•	0	٠		•		•	•
• • • • ·				•			•		•	•		•		•	•
• • • •	• •	٠	•		•	•		•	•	•		•	•		•
• • • •	• •	•	•	•	•	•	٠	•	•	•	•	•	•	•	•
• • • •	• •	*	•	٠	•	•	•	•	•	•	•	•	٠	•	•
		•	•	•	•	•	•	•	•	•	•	•		•	•
		*											*		
• • • •		*		*				•	٠	٠	•	•	•	•	•
• • • • •			•			•	٠	•	٠	٠	•			•	•
• • • •		٠	٠	٠	•	•	•	٠		٠	•	•	•	•	•
• • • •		•		•		•	•	•	•	•	•	•	•	•	•
		•	•		•	•	•	٠	٠	٠	•	•	•	•	•
• • • •		•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•						•	•	٠	•	•	•	•	
/\												•			•
		•	•		•	•	•	٠	•	٠		•	•	•	•
				٠		•	•	•	•	•	•	٠	•	•	•
		•	•		•	•	٠	·	٠	٠	•	•	•	•	•
• • • •		٠	•	٠	•	•	•	•	•	٠	٠	٠	•	•	•
· · · ·		٠	•	•	•	•	•	•	٠	٠	•	•	•	•	•
		•	•	•		•	•	•	•	•	•	•		•	•
			•						•						
• • • •		*						•	•	٠	•	•	•	•	•
• • • • •			•			•	٠	•	•	٠	•	•		•	•
• • • •	• •	•	•	•			•	•	•	•	•	•	•	•	•
• • • •		•	•	*	•	•	•	٠	٠	٠	•	*	•	*	•
 ງ	•••	•	•	•	•	٠	•	٠	٠	٠	•	•	•	•	•
$\langle \sim \rangle$	X	•						•				•		•	•
J /															
	$\langle \rangle$			•				•	•	٠		•		•	•
rodv	NJ.								•	•		•			•
		•		٠	٠	•	•	•	•	•	•	٠	•	•	•
$\left(\frac{1}{2} \right)^{1}$	\mathcal{D}^{1}	•		*	•	•	•	٠	٠	٠	•	•	•	•	•
t(K)			•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•			•	•	•	•	•	•	•	•	•
• • • •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•		•			•	•	•	•	•	•		•	•
							•							•	

Bayes Redux Let B-F-----A be a completely positive unital map between fini C'algebras, $A \sim C$ a state, and let $\Xi = \omega \circ F$. A Bayesian in is a completely positive map A~~~B such that G o idB id, of BORN b⊗b', E Any linear map satisfying the above will be called

ite	di	Mer)SìC	na.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · ·	•	
IVE	rse	20	f (F, L	5)	· ·	•	· ·	•	•	•
· · ·		· · ·	• •	•	• •	• •	•	· ·	•	•	•
· · · ·	· ·	· · ·	• •	•	• •	· ·	•	· · ·	•	•	•
· · · ·		· · ·	•••		••••	· ·	•	· ·	•	•	•
 •	· ·	· · ·	· ·		· ·	· ·	•	· ·	•	•	•
a	.⊗a' T		· · ·		· · ·	· · · · · · · · · · · · · · · · · · ·	•	· ·	•	•	•
>A 	aa'	· · ·	· ·		· ·	· ·	•	· ·	•	•	•
· · · ·	· ·	· · · ·	· · ·	•	· ·	· ·	•	· · ·	•	•	•
· · · ·	· ·	· · · ·	• •	•	• •	• •	•	•••		•	•
· · · ·	· ·		• •		· ·	· ·	•	· ·	•		•
a	R	xaye	S	ma	P.	· · ·	•	· ·		•	•

(Parzygnat-R) Proposition: Let F: M. M. be a completely positive unital map, $\omega = tr(p_{-}), \omega: M_m \longrightarrow \mathbb{C}, \text{ and set } \Xi = \omega \circ F = tr(\sigma_{-}).$ Let P_{Ξ} be the support of Ξ . A Bayes map $G_7: M_m \longrightarrow M_n$ must satisfy $P_{g}G(A) = \widehat{\sigma}F(pA)$ - Here, we make no claims on positivity. - However, PzG()Pz is completely positive iff PzG()Pz is *-preserving.

Schur Complements (i) A≥Ô B 2) $Ker(A) \subseteq Ker(B^*)$ $\sum_{i=1}^{n}$ $\int \int \int dx = 0$ R* 3) C-B*ÂB≥0 Furthermore, when M=O, A Az = $\stackrel{\scriptstyle \sim}{=}$ _B*A* C-B*ÂB LB*AK C-B*ÂB B*

•		•	•	•	•	•		•	•		•		•		•	•	•	•
•	*		•	•		•			٠		•	*	٠	•	٠		•	•
			•						٠					•	٠			
•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	٠	•	•	•
•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•
•	*		•	•		•		•	•		•	*	٠		٠		٠	•
•	•	•	•				٠	•	٠	٠		٠	٠	•	٠	•		
	•		•				•		•			•		•	•			
•						•					•	•					•	
·	•	*	÷	•	•	·	۰	•	*	۰	·	•	*		•	*	·	•
•	•		•	•	•	•			•		•		•	•	•		•	•
•	*	•	•	•	•	٠		•	•		•	*	•		•	•	٠	•
•	٠	•	•	٠	•	•	٠	•	٠	٠	•	٠	•	٠	٠	٠	•	٠
	•	•	•	•			٠		٠	٠		•	•	•	٠	•		
	*																	
•						•					•	•					•	
•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	*	٠	•	•	•	٠	•	٠	٠	•	٠	•	٠	٠	•	•	•
•	•	•	•	٠	•	•	•	•	٠	•	•	٠	٠	٠	٠	•	•	•
•	•		٠	•	•	•		•	٠		•	*	٠	٠	٠	•	٠	•
•	٠	•	•	٠	•	•	٠	•	٠	٠		٠	•	٠	٠	٠	•	•
•	•		•						•					•				
•																		
									•									
•			÷	•	•	·		•	•		·	0	•	•		•	·	
•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•
•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•
•	•		•		•	•		•	•		٠	•	•	•			•	•
•	•		٠	•		•		•	٠		•	*	٠	٠	٠	•	٠	•
•	•		•	•	•		•		٠	•		٠	•	٠	٠	•	•	
		٠				٠												
•											•							
									•		•							
				-			-			-	-	-				-		÷
•	•	٠	٠	•	•	•	•	٠	٠	•	•	*	٠	•	٠	•	٠	•
•	•	٠	•	•	•	٠		٠	•		•	•	٠	•		•	٠	•
•	•	•	·	•		•		•	•	•	•			•	•	•	•	•

Choi - Matrix Let $\Phi: M_n \longrightarrow M_m$ be a linear map and $C_{\mathbf{F}} = \sum_{ij} E_{ij} \otimes \Phi(E_{ij})$ the Choi matrix for Φ . The map Φ is completely positive is a positive matrix. -We can use this and the previous slide to build Bayes

	• •					•	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •					•	•	•	•	•	•	•	•	•	•	•	•		•
	• •					•	•	•	•	•	•	•	•	•		•	•	•	
	• •					•	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •					•	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •				1		•		•	•		•	•	•	•	•	•	•	•
D	e	• •	(0		e	20		•	•	•	•	•	•	•	•	*	•	•
ſ	$\left(\right)$		/			•		•	•	•	•	•	•	•	•	•	•	•	•
J	T			-₹	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •							•	•	•	•	•	•	•	•	•	•	•	•
	• •					•	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •			· ·		•	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •	• •				•	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •	• •	• •			•			•	•	•	•	•	•	•	•	•	•	•
5	İΥ)	CI		Y	S		•	•	•	•	•	•	•	•	•	•	•	•
									•	•	•	•	•	•	•	•	•	•	•
	• •	• •				•	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •					•	•	•	•	•	•	•	•	•		•	•	•	•
	• •						•	•	•	•	•	•	•	•	•	•	•	•	•
	• •					•		•	•	•	•	•	•	•		•	•	•	•
	• •					0	•	•	•	•	•	*	•	•	*	•	•	•	•
	• •						•	•	•	•	•	•	•	•	•	•	•	•	•
	•		• •				•		•		•						•	•	
	•					•	•	•	*	•	•	•	•	•	•	•	*	•	*
	• •					•	•	•	•	•	•	•	•	•	•	•	•	•	•

(Parzygnat-R) Theorem: Let F.M. M. be a completely positive unital map, $\omega = tr(p_{-}), \omega: M_m \sim C, and set z = \omega \circ F = tr(\sigma_{-}).$ Let P_z be the support of z. Set, $A := \sum_{i,j=1}^{m} E_{ij} \otimes \hat{\sigma} F^{*}(\rho E_{ij}) P_{g} \text{ and } B = \sum_{i,j=1}^{m} E_{ij} \otimes \hat{\sigma} F^{*}(\rho E_{ij}) P_{g}$ Then (F,w) has a Bayesian inverse iff $A = A^*$ and $tr_{M_m}(B^*\hat{A}B) \leq P_{z}^+$.

Inverses, disintegrations, and Bayesian inversion in quantum Markov categories

Arthur J. Parzygnat

A non-commutative Bayes' theorem

Arthur J. Parzygnat and Benjamin P. Russo

Non-commutative disintegrations: existence and uniqueness in finite dimensions

Arthur J. Parzygnat and Benjamin P. Russo

A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics

Tobias Fritz

arXiv: 2001.08375v3 arXiv: 2005.03886v/ arXiv: 1907.09689v1 arXiv: 1908.07021v8